RESEARCH PAPER

Green Synthesis of Poly(ethylene oxide)-coated Sulfonated Copper Ferrite Nanoparticles and its Highly Efficient Application in the Synthesis of Dihydropyrimidine Derivatives

Mojtaba Azizi ¹, Ali Maleki ¹, Ali Bodaghi ^{2*}

¹ Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.

² Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran.

ARTICLE INFO	ABSTRACT	
ARTICLE INFO Article History: Received *** Accepted *** Published 1 May 2022 Keywords: Magnetic nanoparticles CuFe2O4@PEO-SO3H Green synthesis Biginelli reaction	ABSTRACT In this work, an immobilization of SO ₃ H groups on the surface of poly(ethylene oxide)-coated copper ferrite nanoparticles was reported. The prepared CuFe ₂ O ₄ @PEO-SO ₃ H is an effective, green, magnetically recoverable, bimetallic, eco-friendly, and heterogeneous solid acid catalyst. Using a green solvent in mild reaction conditions and short reaction times can provide several advantages for this work. The prepared nanocatalyst was characterized using conventional instrumental techniques such as Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) images, energy-dispersive X-ray spectroscopy (EDX), elemental mapping, vibrating sample magnetometer (VSM) data, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies. The application of the present green nanocatalyst as a heterogeneous magnetic nanocomposite catalyst was investigated and developed for the green synthesis of chemically and biologically important dihydropyrimidines derivatives at room temperature in high-to-excellent yields via a simple and convenient method in a one-pot three component Biginelli condensation reaction. Due to the magnetic property of the catalyst, it can be easily recycled from the reaction	
	mixture by an external magnet and reused without any considerable loss of activity.	
How to cite this article Azizi M., Maleki A., Bodaghi A. Green Synthesis of Poly(ethylene oxide)-coated Sulfonated Copper Ferrite Nanoparticles and its Highly Efficient Application in the Synthesis of Dihydropyrimidine Derivatives . Nanochem Res, 2022; 7(2):-0. DOI: 10.22036/ncr.2022.02.00*		

* Corresponding author: alibodaghi@ymail.com

Table of contents (1): Characterization of the selected products (S3 – S6)Table of contents (2): Spectral data of the selected products (S8 - S19)

Table of contents (1)

Characterization of the selected products

Subject	Page
Characterization of the selected products	
FT-IR spectrum of compound 4j (Fig. S1)	S3
¹ H NMR spectra of selected compounds 4j (Fig. S2)	
FT-IR spectrum of compound 4a (Fig. S3)	S5
FT-IR spectrum of compound 4b (Fig. S4)	S6

Spectral data and Characterization of Ethyl 4-(3-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidin -5-carboxylate (4j).

¹H NMR (500 MHz, CDCl₃): δ_H (ppm):

1.07–1.123 (3H, t, *J*=11.5 Hz, CH₃), 3.45 (3H, s, CH₃), 3.95–4.00 (2H, q, *J*=11.5 Hz, CH₂), 5.05 (1H, s, CH), 6.65–6.69 (2H, d, *J*=8.5 Hz, H–Ar), 7.55–7. 153 (2H, d, *J*=8.5 Hz, H–Ar), 9.45 (1H, s, NH), 9.11 (1H, s, NH), 9.13 (1H, s, OH).

Fig. S1 FT-IR spectrum of compound (4j)

Fig. S2 ¹H NMR spectrum of compound (4j)

Spectral data and Characterization of Ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (4a).

Fig. S3 FT-IR spectrum of compound (4a)

Spectral data and Characterization of Methyl 4- (4-methoxyphenyl)-1,2,3,4-tetrahydro-6-methyl-2-thioxopyrimidine-5-carboxylate (4b).

Fig. S4 FT-IR spectrum of compound (**4b**)

Table of contents (2)

Spectral data of the selected products

Subject	Page
Spectral data of the selected products	
Fig. S1 ¹ H NMR spectrum of the product $4c$	S8
Fig. S2 ¹³ C NMR spectrum of the product 4c	S9
Fig. S3 ¹ H NMR spectrum of the product 4m	S10
Fig. S4 ¹³ C NMR spectrum of the product 4m	S11
Fig. S5 ¹ H NMR spectrum of the product 4n	S12
Fig. S6 13 C NMR spectrum of the product 4n	S13
Fig. S7 ¹ H NMR spectrum of the product 40	S14
Fig. S8 ¹³ C NMR spectrum of the product 40	S15
Fig. S9 ¹ H NMR spectrum of the product 4p	S16
Fig. S10 13 C NMR spectrum of the product 4p	S17
Fig. S11 ¹ H NMR spectrum of the product 4q	S18
Fig. S12 13 C NMR spectrum of the product 4q	S19

Methyl 4-(3-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine -5-carboxylate (4c).

¹H NMR (500 MHz, CDCl₃): δ_H (ppm):

2.22 (3H, s, CH₃), 3.52 (3H, s, CH₃), 5.04 (1H, s, CH), 6.59–6.65 (3H, m, H–Ar), 7.03 (1H,

m, H-Ar), 7.08 (1H, s, OH), 9.22 (1H, s, NH), 9.38 (1H, s, NH).

Fig. S1 ¹H NMR spectrum of the product 4c

Methyl 4-(3-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine -5carboxylate (4c).

¹³C NMR (125 MHz, CDCl₃); δ_c (ppm) :

18.3, 51.3, 54.1, 99.5, 113.4, 114.6, 117.2, 129.8, 146.5, 148.9, 152.8. 157.8, 166.3.

Fig. S2 ¹³C NMR spectrum of the product 4c

Ethyl 4-(3-nitrophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4m).

¹H NMR (500 MHz, CDCl₃): δ_H (ppm):

1.08 (3H, t, *J*=7.1 Hz, CH₃), 2.17 (3H, s, CH₃), 3.93 (2H, q, *J*=7.1 Hz, CH₂), 6.11 (1H, d, *J*=3.4 Hz, CH), 7.15–7.33 (5H, m, H–Ar), 7.74 (1H, s, NH), 9.19 (1H, s, NH).

Fig. S3 ¹H NMR spectrum of the product 4m

Ethyl 4-(3-nitrophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4m).

¹³C NMR (125 MHz, CDCl₃): δ_C (ppm):

14.0, 15.9, 52.5, 60.7, 105.0, 121.5, 123.6, 127.5, 132.0, 132.5, 135.5, 140.6, 146.6, 160.6.

Fig. S4 ¹³C NMR spectrum of the product 4m

Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5carboxylate (4n).

¹H NMR (500 MHz, CDCl₃): δ_H (ppm) :

1.06–1.09 (3H, t, *J*=7 Hz, CH₃), 2.21 (3H, s, CH₃), 3.93–3.97 (2H, q, *J*=6.5 Hz, CH₂), 5.01 (1H, s, CH), 6.65–6.67 (2H, d, *J*=8.5 Hz, H–Ar), 6.99–7.01 (2H, d, *J*=8.5 Hz, H–Ar), 7.62 (1H, s, OH), 9.11 (1H, s, NH), 9.13 (1H, s, NH).

Fig. S5 ¹H NMR spectrum of the product 4n

Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4n):

¹³C NMR (125 MHz, CDCl₃): δ_C(ppm):

14.5, 18.2, 53.8, 59.5, 100.0, 115.4, 127.8, 135.8, 148.2, 152.6, 156.9, 165.8.

Fig. S6 ¹³C NMR spectrum of the product 4n

Ethyl 4-(4-fluorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (40).

¹H NMR (500 MHz, CDCl₃): δ_H (ppm) :

1.05 (3H, CH₃), 2.22 (3H, s, CH₃), 3.94 (2H, q, CH₂), 5.12 (1H, s, CH), 7.16 (2H, H–Ar), 7.22 (2H, H–Ar), 7.75 (1H, s, NH), 9.23 (1H, s, NH).

Fig. S7 ¹H NMR spectrum of the product 40

Ethyl 4-(4-fluorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (40).

¹³C NMR (125 MHz, CDCl₃): δ_C (ppm) :

14.5, 18.2, 53.7, 59.6, 99.5, 115.5, 115.6, 128.7, 141.5, 149.0, 152.4, 160.7, 162.7, 165.6.

Fig. S8 ¹³C NMR spectrum of the product 40

Methyl 6-*methyl*-2-*oxo*-4-*phenyl*-1,2,3,4-*tetrahydropyrimidine*-5-*carboxylate* (4*p*).

¹H NMR (500 MHz, DMSO): δ_H (ppm) :

2.21 (3H, s, CH₃), 3.49 (3H, s, CH₃), 5.10 (1H, d, *J*=3.3 Hz, CH), 7.18–7.29 (5H, m, H–Ar),

7.72 (1H, s, NH), 9.18 (1H, s, NH).

Fig. S9 ¹H NMR spectrum of the product 4p

Methyl 6-*methyl*-2-*oxo*-4-*phenyl*-1,2,3,4-*tetrahydropyrimidine*-5-*carboxylate* (4*p*).

¹³C NMR (125 MHz, CDCl₃); δ_c(ppm):

18.7, 51.3, 55.6, 101.2, 126.6, 128.1, 128.9, 143.7, 146.9, 153.9, 166.3.

Fig. S10 ¹³C NMR spectrum of the product 4p

Methyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4q).

¹H NMR (500 MHz, CDCl₃): δ_H (ppm):

2.31 (3H, s, CH₃), 3.59 (3H, s, CH₃), 5.26 (1H, d, *J*=3.5 Hz, CH), 7.26 (4H, m, H–Ar), 7.51

(1H, s, NH), 9.11 (1H, s, NH).

Fig. S11 ¹H NMR spectrum of the product 4q

Methyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4q):

¹³C NMR (125 MHz, CDCl₃); δ_C (ppm):

18.7, 52.6, 57.7, 98.9, 121.2, 123.6, 127.5, 135.0, 142.6, 146.6, 152.6.

Fig. S12 ¹³C NMR spectrum of the product 4q