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Nano-Fe3O4 attached to Cross-linked sulfonated polyacrylamide (Cross-
PAA-SO3H), as a superior catalyst, has been utilized for the preparation 
of 3-alkyl-4-phenyl-1,3-thiazole-2(3H)-thione derivatives through a three-
component reaction of phenacyl bromide or 4-methoxyphenacyl bromide, 
carbon disulfide, and primary amine. The best results were gained in 
ethanol, and it was also found that the reaction gives convincing results 
in the presence of cross-PAA-SO3H@nano-Fe3O4 (5 mg) under ultrasonic 
irradiation. The structures of the products were fully established on 
the basis of their 1H NMR, 13C NMR and FT-IR spectra. A proper, atom-
economical, straightforward one-pot multicomponent synthetic route 
for the synthesis of 1,3-thiazoles in good yields has been devised using 
cross-linked sulfonated polyacrylamide (Cross-PAA-SO3H) attached to 
nano-Fe3O4. The remarkable advantages of this methodology are short 
reaction times, high to excellent yields, operational simplicity, low catalyst 
loading and reusability of the catalyst. The catalyst has been characterized 
by Fourier-transform infrared spectroscopy (FT-IR), scanning electron 
microscope (SEM), X-ray powder diffraction (XRD), energy dispersive 
spectroscopy (EDS), thermo- gravimetric analysis (TGA) and vibrating-
sample magnetometer (VSM). 
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INTRODUCTION
1,3-thiazoles possess many biological 

properties such as anticancer [1], antimicrobial 
[2], anti-inflammatory [3], and anti-candida [4]. 
Finding effective methods for the preparation of 
1,3-thiazoles is a principal challenge. The synthesis 
of 1,3-thiazole derivatives have been reported 
in the presence of different catalysts including 
DBU [5], HClO4-SiO2 [6], Bi(SCH2COOH)3 [7], 
[Et3NH][HSO4] [8], and Ytterbium(III) Triflate 
[9]. However, some of the reported methods 
endure drawbacks including long reaction times, 
harsh reaction conditions, use of toxic and non-

reusable catalyst. To avoid the existing limitations, 
the exploration of an efficient catalyst with high 
catalytic activity and short reaction times for 
the preparation of 1,3-thiazoles is still favored. 
The feasibility of achieving one-pot multi-
component synthesis under ultrasonic irradiation 
with a heterogeneous catalyst could improve the 
reactions rates and shorten the reactions times. 
The modifying cross-linked polyacrylamides make 
them attractive objects in chemistry and polymer 
science [10-12]. Sulfonated polyacrylamides have 
unique characteristics such as high strength, 
hydrophilicity, and proton conductivity [13-
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14]. Recently, magnetic nanoparticles (MNPs) 
have been successfully utilized to immobilize 
enzymes, polymers, transition metal catalysts 
and organocatalysts [15-16]. The ultrasound 
approach decreases time, and increases yields 
of products by creating the activation energy in 
micro surroundings [17-18]. In the current study, 
we investigate an easy and rapid method for the 
synthesis of thiazole-2(3H)-thione through three-
component reactions of phenacyl bromide or 
4-methoxyphenacyl bromide, carbon disulfide 
and primary amine using cross-linked sulfonated 
polyacrylamide (Cross-PAA-SO3H) attached to 
nano-Fe3O4, as an efficient catalyst under ultrasonic 
irradiations (Scheme 1). 

EXPERIMENTAL SECTION
Chemicals and apparatus

NMR spectra were obtained on a Bruker 
spectrometer with CDCl3 as the solvent and TMS 
as an internal standard. Chemical shifts (δ) are 
given in ppm and coupling constants (J) are given 
in Hz. FT-IR spectra were recorded with KBr 
pellets by a Magna-IR, spectrometer 550 Nicolet. 
CHN compositions were measured by Carlo ERBA 
Model EA 1108 analyzer. Powder X-ray diffraction 
(XRD) was performed on a Philips diffractometer 
of X’pert Company with monochromatized Cu Kα 
radiation (λ = 1.5406 Å). Microscopic morphology 
of products was visualized by SEM (MIRA3). The 
thermogravimetric analysis (TGA) curves are 
registered using a V5.1A DUPONT 2000. The 
magnetic measurement of samples was performed 
in a vibrating sample magnetometer (VSM) 
(Meghnatis Daghigh Kavir Co.; Kashan Kavir; 
Iran).

Preparation of Cross-linked Sulfonated Polyacryl-
amide (Cross-PAA-SO3H):

In a round-bottom flask (200 mL) equipped with 
magnetic stirrer and condenser, 5 gr of acrylamid 
(AAM) (70 mmol) and 5.17 gr of 2-acryloylamino-
2-methylpropane-sulfonic acid (25 mmol) 

(AAMPS), (approximately AAM/AAMPS (3/1)) 
and 0.77 gr of N,N-methylene-bis-acrylamid 
(NNMBA) (5 mmol), as a crosslinking agent and 
benzoyl peroxide, as an initiator, were added to 
80 mL EtOH under reflux condition for 5 h. After 
completion of reaction, the white precipitate was 
formed, filtered, washed and dried in a vacuum 
oven at 70ºC for 12 h. The weight of polymer was 
10.1 gr with the yield of 91.8%. This catalyst was 
characterized with infrared spectroscopy and 
back titration acid-base to confirm sulfonation 
and determine accurate sulfonation levels. Acidic 
capacity of this catalyst was estimated to be 1.1 
mmol /gr.

Preparation of cross-linked solfonated polyacryl-
amide@nano-Fe3O4

1 gr of synthesized polymers was poured in 100 
mL round bottom flask under stirring at room-
temperature, then 50 mL HCl (0.4 M) was added 
to it. Our target molecules was synthesized by 
magnetic nanocatalyst with mass ratio polymer/
nano-Fe3O4 = 2/1. So, 0.43 gr (2.1 mol) FeCl2.4H2O 
and 1.17 gr (2×2.1) FeCl3.6 H2O were added and 
the mixture was stirred until dissolved completely 
(flask1). In another 500 ml round-bottom flask, 
No 2, 400 mL aqueous solution of NH3 (0.7M) was 
poured under argon gas. Then, flask 1 was added to 
flask 2 immediately. Nanocatalyst was filtered and 
washed with water (2×25 mL) and dried in an oven 
at 50 o C.

General procedure for the synthesis of 1,3-thiazoles 
A mixture of primary amine (1.0 mmol) and 

carbon disulfide (1.0 mmol) in ethanol  (8 mL) 
was stirred for 5 min, and then phenacyl bromide 
or 4-methoxyphenacyl bromide (1.0 mmol) and 
Cross-PAA-SO3H attached to nano-Fe3O4 (5 mg) 
were added and sonicated at 40 W power for the 
appropriate times (monitored by TLC). After 
completion of the reaction, the nanocatalyst was 
easily separated using an external magnet. The 
solvent was evaporated and the solid obtained 
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Scheme 1. Synthesis of 1,3-thiazoles under ultrasonic irradiation 
   

Scheme 1. Synthesis of 1,3-thiazoles under ultrasonic irradiation
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was washed with EtOH to get pure product. The 
characterization data of the compounds are given 
below.

3-Benzyl-4-phenyl-1,3-thiazole-2(3H)-thione 
(4a): Colorless viscous oil; FT-IR (KBr):  = 3102, 
3005, 1602, 1479, 1202 cm-1; 1H NMR (250 MHz, 
CDCl3): δ 4.90 (s, 2H, CH2), 6.03 (s, 1H, CH of 
alkene), 6.95–7.36 (m, 10H, CH, ArH). 13C NMR 
(62.5 MHz, CDCl3): δ 47.24, 98.85, 127.06, 127.42, 
128.52, 128.55, 129.08, 133.32, 137.45, 154.85, 
178.37, 197.18. MS (EI, 70 eV): m/z (%) = 283 (5), 
267(68), 181(7), 91 (100), 77 (4), 65 (12), 45 (4). 
Anal. Calcd. for C16H13NS2 (283): C, 67.81; H, 4.62; 
N, 4.94. Found: C, 67.70; H, 4.52; N, 4.73 %.

3-(3,4-dichlorobenzyl)-4-phenyl-1,3-thiazole-
2(3H)-thione (4b): Colorless viscous oil; FT-IR 
(KBr):  = 3152, 3004, 1628, 1603, 1477, 1302, 
1104 cm-1. 1H NMR (250 MHz, CDCl3): δ 4.83 
(s, 2H, CH2), 6.05 (CH of alkene), 6.75–7.97 (m, 
8H, CH of ArH). 13C NMR (62.5 MHz, CDCl3): δ 
46.07, 99.25, 126.72, 128.65, 128.74, 129.35, 129.66, 
133.54, 130.50, 135.38, 136.62, 137.21, 172.70, 
194.15. Anal. Calcd. for C16H11Cl2NS2 (350): C, 
54.55; H, 3.15; N, 3.98. Found: C, 54.36; H, 3.05; 
N, 3.84 %.

3 - ( 2- Naphthyl methyl ) - 4 - phenyl - 1, 3 - 
thiazole 2(3H)- thione (4c): Colorless viscous oil; 
FT-IR (KBr):  = 3102, 3009, 1652, 1605, 1479, 
1204 cm-1. 1H NMR (250 MHz, CDCl3): δ 3.95 (s, 
2H, CH2), 6.12 (s, 1H, CH of alkene), 6.92–7.97 (m, 
12H, CH of ArH). 13C NMR (62.5 MHz, CDCl3): δ 
45.35, 99.05, 123.77, 125.32, 125.84, 126.34, 128.06, 
128.68, 128.75, 133.54, 122.52, 129.28, 131.50, 
135.08, 172.44, 194.16. Anal. Calcd. for C20H15NS2 
(333): C, 72.03; H, 4.53; N, 4.20. Found: C, 72.05; 
H, 4.40; N, 4.15 %.

3-(2-Furyl methyl)-4-phenyl-1,3-thiazole-2(3H)-
thione (4d): Colorless viscous oil; FT-IR (KBr):  
= 3105, 3002, 1653, 1607, 1474, 1202 cm-1. 1H NMR 
(250 MHz, CDCl3): δ 4.84 (s, 2H, CH2), 6.10 (s, 1H, 
CH of alkene), 6.22 (1H, CH of furan), 7.25–8.05 
(m, 7H, CH of ArH and CH of furan). 13C NMR 
(62.5 MHz, CDCl3): δ 44.25, 98.32, 109.52, 110.83, 
127.08, 128.76, 129.58, 142.12, 144.54, 147.92, 
155.44, 192.18. Anal. Calcd. for C14H11NOS2 (273): 
C, 61.51; H, 4.06; N, 5.12. Found: C, 61.46; H, 4.04; 
N, 5.09 %.

3-(4-Fluorobenzyl)-4-phenyl-1,3-thiazole-2(3H)-
thione (4e): Colorless viscous oil; FT-IR (KBr):  
= 3153, 3005, 1628, 1604, 1473, 1302, 1108 cm-1. 1H 
NMR (250 MHz, CDCl3): δ 4.85 (s, 2H, CH2), 6.05 
(s, 1H, CH of alkene), 6.85 (d, 2H, J = 6.8 Hz, CH 

arom), 7.02–7.59 (m, 5H, CH of ArH), 7.98 (d, 2H, J 
= 7.5 Hz, CH of ArH).13C NMR (62.5 MHz, CDCl3): 
δ 46.45, 99.08, 114.53, 128.67, 128.78, 133.51, 129.05, 
135.46, 137.57, 153.28, 159.50, 194.19. Anal. Calcd. 
for C16H12FNS2 (301): C, 63.76; H, 4.01; N, 4.65. 
Found: C, 63.60; H, 4.04; N, 4.42 %. 

3-(2-Methoxybenzyl)-4-phenyl-1,3-thiazole-
2(3H) -thione (4f): Colorless viscous oil; FT-IR 
(KBr):  = 3150, 3000, 1650, 1600, 1470, 1200, 
1100 cm-1. 1H NMR (250 MHz, CDCl3): δ 3.62 (s, 
3H, OCH3), 4.90 (s, 2H, CH2), 6.03 (s, 1H, CH of 
alkene), 6.71–7.98 (m, 9H, CH, ArH).13C NMR 
(62.5 MHz, CDCl3): δ 42.56, 55.05, 98.47, 110.05, 
120.53, 128.38, 128.46, 128.55, 128.78, 129.05, 
133.54, 127.12, 135.45, 156.35, 194.14. Anal. Calcd. 
for C17H15NOS2 (313): C, 65.14; H, 4.82; N, 4.47. 
Found: C, 65.03; H, 4.74; N, 4.35%.

3-(4-Methylbenzyl)-4-(4-methoxyphenyl)-1,3-
thiazole-2(3H)-thione (4g): Colorless viscous oil; 
FT-IR (KBr):  = 3156, 3008, 1648, 1612, 1475, 
1206, 1108 cm-1. 1H NMR (250 MHz, CDCl3): δ 2.23 
(s, 3H, CH3), 3.86 (s, 3H, OCH3), 4.95 (s, 2H, CH2), 
5.98 (s, 1H, CH of alkene), 6.82–7.35 (m, 8H, CH of 
ArH).13C NMR (62.5 MHz, CDCl3): δ 21.35, 48.54, 
55.95, 98.68, 115.38, 123.42, 125.64, 130.65, 131.25, 
132.59, 139.25, 160.20, 174.25, 183.56. Anal. Calcd. 
for C18H17NOS2 (327): C, 66.02; H, 5.23; N, 4.28;. 
Found: C, 65.90; H, 5.14; N, 4.12 %.

3-benzyl-4-(4-methoxyphenyl)-1,3-thiazole-2 
(3H)-thione (4h): Colorless viscous oil; FT-IR 
(KBr):  = 3157, 3012, 1645, 1616, 1478, 1209, 
1107 cm-1. 1H NMR (250 MHz, CDCl3): δ 3.89 (s, 
3H, OCH3), 5.25 (s, 2H, CH2), 6.28 (s, 1H, CH of 
alkene), 6.85–7.39 (m, 9H, CH of ArH).13C NMR 
(62.5 MHz, CDCl3): δ 48.50, 55.37, 99.86, 110.55, 
114.54, 122.54, 128.38, 129.54, 132.86, 137.54, 
145.68, 160.85, 185.36. MS (EI, 70 eV): m/z (%) 
= 313 (M). Anal. Calcd. for C17H15NOS2 (313): C, 
65.14; H, 4.82; N, 4.47; Found: C, 65.02; H, 4.56; 
N, 4.34; %.

3-(2-Furyl methyl)-4-(4-methoxyphenyl)-1,3-
thiazole-2(3H)-thione (4i): Colorless viscous oil; 
FT-IR (KBr):  = 3144, 3012, 1658, 1615, 1478, 
1209, 1112 cm-1. 1H NMR (250 MHz, CDCl3): δ 3.88 
(s, 3H, OCH3), 4.82 (s, 2H, CH2), 5.98 (2H, CH of 
furan), 6.20 (s, 1H, CH of alkene), 6.75–7.42 (m, 
5H, CH of furan and CH of ArH). 13C NMR (62.5 
MHz, CDCl3): δ 41.35, 55.34, 98.36, 108.35, 110.35, 
118.35, 122.54, 130.22, 138.54, 142.35, 150.65, 
161.25, 178.25. Anal. Calcd. for C15H13NO2S2 (303): 
C, 59.38; H, 4.32; N, 4.62; Found: C, 59.15; H, 4.14; 
N, 4.42%.
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3-(2-methoxybenzyl)-4-(4-methoxyphenyl)-1,3-
thiazole-2(3H)-thione (4j): Colorless viscous oil; FT-
IR (KBr):  = 3142, 3010, 1654, 1611, 1472, 1205, 
1116 cm-1. 1H NMR (250 MHz, CDCl3): δ 3.68 (s, 
3H, OCH3), 3.84 (s, 3H, OCH3), 4.89 (s, 2H, CH2), 
6.05 (s, 1H, CH of alkene), 6.72–7.53 (m, 8H, CH of 
ArH). 13C NMR (62.5 MHz, CDCl3): δ 43.54, 56.45, 
56.48, 98.45, 110.25, 115.28, 120.54, 122.54, 125.85, 
125.64, 128.54, 130.42, 138.20, 158.64, 160.24, 
172.54. Anal. Calcd. for C18H17NO2S2 (343): C, 62.94; 
H, 4.99; N, 4.08; Found: C, 62.72; H, 4.70; N, 3.91. %.

RESULTS AND DISCUSSION
Characterization of the nanocatalyst

In this study, we synthesized the cross-linked 
sulfonated polyacrylamide (Cross-PAA-SO3H) 
with simultaneous radical co-polymerization in the 
presence of initiator and cross-linking agent. The 
FT-IR absorbance spectra of the dried cross-linked 
sulfonated polyacrylamide (poly AAM-co-AAMPS), 
Fe3O4 and Cross-PAA-SO3H@nano-Fe3O4 are 
shown in Fig. 1. AAM is abbreviation of acrylamide, 
and AAMPS is abbreviation of 2-acrylamido-2-
methylpropanesulfonic acid. The N–H stretching 
vibration of the amide groups in AAm and AAMPS 
and overlapping O–H stretching vibration of 
sulfonic acid group in AAMPS are observed in the 
region 3100–3500 cm−1. The strong absorption band 
in the 1658 cm−1 can be attributed to the stretching 

vibrations of C=O groups in both AAm and AAMPS. 
Secondary amide band of AAMPS unit has a peak in 
1545 cm−1. The sharp peak at 1042 cm −1 is related to 
sulfonic acid (–SO3H) group. The symmetric band 
of SO2 is observed in 1178-1216 cm −1. The band at 
1453 cm−1 is assigned to the stretching vibration of 
the C–N bond (amide) and the asymmetric bending 
of the C–H bond in methyl groups of AMPS. Table 1 
gives the main characteristic peak assignment of the 
FT-IR spectra. Also a schematic illustration of the 
reaction is shown in Scheme 2. The absence of the 
olefinic band at 1620–1635 cm −1 confirms that there 

 

Fig 1. The FT-IR spectra of (a) Fe3O4 NPs, (b) Cross-PAA-SO3H, and (c) Cross-PAA-SO3H@nano-Fe3O4. 

   

Fig. 1. The FT-IR spectra of (a) Fe3O4 NPs, (b) Cross-PAA-SO3H, and (c) Cross-PAA-SO3H@nano-Fe3O4

Table 1: Peak assignment of cross-linked sulfonated polyacrylamide (Cross-PAA-SO3H) 
 
Peak position 
(cm-1 ) Assignment 

3100-3500 N-H stretching of NH2,OH stretching of (- SO3H)
1658 C=O stretching of CO in AAM and AAMPS 
1545 Secondary amid band of  AAMPS 
1042 Sulfonic acid (- SO3H) group 
1175-1216 Symmetric band of SO2  
1453 Stretching of the C-N band (amid) 

  
   

Table 1. Peak assignment of cross-linked sulfonated polyacrylamide (Cross-PAA-SO3H)

O
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NH+ SO3H

N,N-MBA/Bz2O2 EtOH/Reflux/5h

*
*

O NH2
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O

H
N SO3H

5% Crosslinked Sulfonated Polyacrylamide  

Scheme 2. Preparation of cross-linked sulfonated polyacrylamide (Cross-PAA-SO3H) 

   

Scheme 2. Preparation of cross-linked sulfonated 
polyacrylamide (Cross-PAA-SO3H)
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is no residual monomer in the system. The results in 
Fig. 1 (c) suggest the integration of Fe3O4 NPs and 
Cross-PAA-SO3H.

The particle size and morphology of Cross-PAA-

SO3H@nano-Fe3O4 were determined by Scanning 
Electronic Microscopy (SEM). The statistic of 
results from SEM images clearly demonstrates that 
the average size of Cross-PAA-SO3H@nano-Fe3O4 
is about 7-25 nanometers (Fig. 2). 

Fig. 3 exhibits the powder X-ray diffraction 
(XRD) pattern. The pattern agrees well with the 
reported pattern for Fe3O4 (JCPDS No. 75-1609). 
The particle size diameter (D) of the nanoparticles 
has been calculated by the Debye–Scherrer 
equation (D = Kλ/β cos θ), where β FWHM (full-
width at half-maximum or half-width) is in radian 
and θ is the position of the maximum of the 
diffraction peak. K is the so-called shape factor, 
which usually takes a value of about 0.9, and λ is 
the X-ray wavelength (1.5406Å for CuKα). All 
the strong peaks appeared at 2θ = 30.08°, 35.40°, 
43.17°, 53.59°, 57.20°, 62.86°, and 74.02° can be 
easily indexed to nano-Fe3O4. The crystallite size 
of Cross-PAA-SO3H@nano-Fe3O4 calculated by 
the Debye–Scherer equation is about 20-25 nm, in 
good agreement with the result obtained by SEM.

An EDS (energy dispersive X-ray) spectrum of 
Cross-PAA-SO3H@nano-Fe3O4 (Fig. 4) exhibits 

 

Fig. 2. SEM image of Cross-PAA-SO3H@nano-Fe3O4 

   

 

Fig 3. The XRD pattern of Cross-PAA-SO3H@nano-Fe3O4 

   

 

Fig. 4. EDS spectrum of Cross-PAA-SO3H@nano-Fe3O4. 

   

Fig. 2. SEM image of Cross-PAA-SO3H@nano-Fe3O4

Fig. 3. The XRD pattern of Cross-PAA-SO3H@nano-Fe3O4

Fig. 4. EDS spectrum of Cross-PAA-SO3H@nano-Fe3O4.
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that the elemental compositions are carbon, 
oxygen, sulfur, iron and nitrogen. 

The magnetic attributes of nano-Fe3O4 and 
Cross-PAA-SO3H@nano-Fe3O4 were given with the 
help of a vibrating sample magnetometer (VSM) 
(Fig. 5). The amounts of saturation-magnetization 
for nano-Fe3O4 and Cross-PAA-SO3H@nano-
Fe3O4 are 47.2 emu/g and 26.8 emu/g. These 
results illustrate that the magnetization property is 
reduced by coating and functionalization.

Thermogravimetric analysis (TGA) evaluates 
the thermal stability of the Cross-PAA-SO3H@
nano-Fe3O4. These nanoparticles display proper 
thermal stability without a significant decrease in 
weight (Fig. 6). The weight loss at temperatures 
below 200ºC is owing to the removal of physically 
adsorbed solvent and surface hydroxyl groups. The 
curve shows a weight loss about 20% from 250 to 
600ºC, resulting from the decomposition of the 
organic spacer attaching to the nano-Fe3O4 surface.

 

 

Fig.  5. The VSM curve of: (a) nano-Fe3O4  and  (b) Cross-PAA-SO3H@nano-Fe3O4 

   

 

 

Fig.  5. The VSM curve of: (a) nano-Fe3O4  and  (b) Cross-PAA-SO3H@nano-Fe3O4 

   

Fig. 5. The VSM curve of: (a) nano-Fe3O4  and  (b) Cross-PAA-SO3H@nano-Fe3O4

 

 

Fig.  6. TGA curve of Cross-PAA-SO3H@nano-Fe3O4. 

   

Fig. 6. TGA curve of Cross-PAA-SO3H@nano-Fe3O4.

Table 2. Optimization of reaction conditions a 

 

Entry Solvent (reflux) Catalyst Time 
(min) 

Yield 
(%)b 

1 EtOH — 500 39 
2 EtOH CAN (5 mol %) 250 51 
3 EtOH NaHSO4 (4 mol %) 300 40 
4 EtOH InCl3 (4 mol%) 200 56 
5 EtOH ZrO2 (3 mol%) 250 45 
6 EtOH p-TSA (3 mol%) 200 64 
7 EtOH  nano-Fe3O4 (10 mg) 200 52 
8  H2O (US: 40 W)c Cross-PAA-SO3H@nano-Fe3O4 (5 mg) 15 75 
9 DMF (US: 40 W) Cross-PAA-SO3H@nano-Fe3O4 (5 mg) 15 80 
10 CH3CN (US: 40 W) Cross-PAA-SO3H@nano-Fe3O4 (5 mg) 10 88 
11 EtOH (US: 40 W) Cross-PAA-SO3H@nano-Fe3O4 (3 mg) 10 91 
12 EtOH (US: 40 W) Cross-PAA-SO3H@nano-Fe3O4 (5 mg) 10 93 
13 EtOH (US: 40 W) Cross-PAA-SO3H@nano-Fe3O4 (7 mg) 10 93 

a Phenacyl bromide (1 mmol), carbon disulfide (1 mmol), and benzyl amine (1 mmol) 
 b Isolated yield 
c Ultrasonic irradiation 
   

Table 2. Optimization of reaction conditions a
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Catalytic behaviors of Cross-PAA-SO3H@nano-
Fe3O4 for the synthesis of 1,3-thiazoles 

Initially, the conditions for the synthesis of 
3- alkyl -4 – phenyl -1,3 –thiazole -2(3H) -thione 
derivatives were optimized by the reaction of 
phenacyl bromide, carbon disulfide and benzyl 

Table 3. Synthesis of thiazoles using Cross-PAA-SO3H@nano-Fe3O4 

 

Entry Amine 
(R-NH2) 

ArCOCH2Br product Time 
(min) Yield (%)a 

 
 

1 

 
 

 

 
 

 
 

4a 

 
 

10 

 
 

93 
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4b 
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4h 

 
 

10 

 
 

82 
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4i 

 
 
 

10 

 
 
 

80 

 
 

10 

 

 

 

 
 

 
4j 

 
10 

 
86 

       a Isolated yield 

Table 3. Synthesis of thiazoles using Cross-PAA-SO3H@nano-Fe3O4

amine as a model reaction. The model reactions 
were performed by CAN, NaHSO4, InCl3, ZrO2, 
p-TSA, nano-Fe3O4 and Cross-PAA-SO3H@nano-
Fe3O4. The reactions were tested using various 
solvents including ethanol, acetonitrile, water, 
and dimethylformamide. The best results were 
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gained in EtOH. The reaction gave convincing 
results in the presence of cross-PAA-SO3H@nano-
Fe3O4 (5 mg) under ultrasonic irradiation (Table 
2). We studied the feasibility of the reaction by 
selecting some representative substrates (Table 2). 
To investigate the extent of this catalytic process, 
phenacyl bromide or 4-methoxyphenacyl bromide, 
carbon disulfide and primary amine were elected 
as substrates. Seeking of the reaction scope 
demonstrated that various primary amines can be 
utilized in this method (Table 3). 

Scheme 3 displays a proposed mechanism for 
this reaction in the presence of cross-PAA-SO3H@
nano-Fe3O4 as the catalyst. Initially the nucleophilic 
attack by amines on a carbon disulfide generates 
intermediate (I). The next step involves nucleophilic 
attack of intermediate (I) on the methylene carbon 
of phenacyl bromide, leading to intermediate (II), 
and then ring closure by intramolecular attack 
of nitrogen at the carbonyl carbon to afford the 
3-alkyl-4-phenyl-1,3- thiazole-2(3H)-thione deri-
vatives. In this mechanism, the surface atoms of 
cross-PAA-SO3H@nano-Fe3O4activate the C=S and 
C=O groups for better reaction with nucleophiles.

The reusability of Cross-PAA-SO3H@nano-
Fe3O4 was studied for the reactions of phenacyl 
bromide, carbon disulfide and benzyl amine. It 
was found that the product yields are reduced to a 
small extent on each reuse (run 1, 93%; run 2, 93%; 
run 3, 92%; run 4, 92%; run 5, 91%; run 6, 90%;).  
After completion of the reaction, the nanocatalyst 

was separated by an external magnet. The catalyst 
was washed four times with ethanol and dried at 
room temperature for 18 h. The catalyst could be 
reused for six times with a minimal loss of activity. 
The morphology and particle size of Cross-PAA-
SO3H@nano-Fe3O4 were investigated by scanning 
electron microscopy (SEM) before use and after six 
times reuse with images shown in Fig. 7. The SEM 
of Cross-PAA-SO3H@nano-Fe3O4 after reaction 
showed identical shape. The morphology of the 
nanoparticles remained unchanged before and after 
reaction. We believe that this is also the possible 
reason for the extreme stability of the nanoparticles 
presented herein.

CONCLUSION
In conclusion, we have reported an efficient way 

for the synthesis of 3-alkyl-4-phenyl-1,3-thiazole-
2(3H)-thione derivatives using cross-PAA-SO3H@
nano-Fe3O4 under ultrasonic irradiation. The 
method offers several advantages including easy 
availability, high yields, shorter reaction time, 
reusability of the catalyst, and low catalyst loading. 
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