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The present study reports the synthesis of N-doped TiO2 photocatalyst for 
the degradation of caffeine using mechanochemical grinding method from 
the mixture of titania/urea followed by calcination at 400 ⁰C. The phase 
composition, particle size, surface area, morphology and optical properties 
were characterized. The XRD results revealed that anatase is dominant and 
the size of crystal is decreased from 35.8 to 33 nm after mechanical doping. 
An improved surface area of 42.9 m2g-1 is also reported. The morphology 
from SEM also showed a uniform yellow-like powder indicating complete 
dispersion of nitrogen on the TiO2 surface. The prepared sample showed 
visible-light absorption in the region 430 nm corresponding to band gap 
energy 2.88 eV, indicating its potential applications as a visible light induced 
photocatalyst. Photocatalytic oxidation of caffeine were investigated in 
300 minutes irradiation time and N-doped TiO2 demonstrated the higher 
removal efficiency of 97% compared to commercial TiO2 powder with  91% 
efficiency at the same experimental condition.
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INTRODUCTION
Mechanochemical synthesis is being widely 

applied to organic chemistry since quite long 
time, and mechanochemisty of inorganic solid 
is a well-established field in pharmacy, crystal 
engineering, material engineering, extractive 
metallurgy, agriculture and waste treatment [1]. 
Mechanochemical preparation procedure involves 
chemical activation of solid due to deformation 
and fracture which are technically induced by 
milling or grinding of the material [2]. The reaction 
proceeds with increase in the internal and surface 
energy, increase in surface area and decrease in 
coherence energy of the material involved which 
may lead to spontaneous aggregation, adsorption 
or recrystallization of the activated system during 
and after mechanical grinding [3]. 

Milling can be carried out in a variety of ways. 
The simplest ways are the laboratory motor and 
pestle and the laboratory vibrators which are 
efficient for small samples that do not require high 
energy barrier. Ball mills and high speed attritors 
are used for prolonged high energy milling [4].

The main advantage of mechanochemical 
synthesis is that it is a quantity process permitting 
kilograms of material to be produced at an ambient 
temperature, easy handling operation condition 
in solvent free mode and in very short processing 
time [5]. Mechanochemistry is also proved to 
be feasible alternative when dealing with highly 
insoluble reagents [6] and nanoparticles are often 
formed by this technological approach which adds 
value to process solids, simplication of the process, 
ecological safety with greener synthesis [7].
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Doping is one of the typical approaches to 
extend the spectral response of the wide bandgap 
semiconductors to visible light [8,9,10]. Successful 
doping can be achieved by many strategies with 
either transition metal ion or with non-metal 
dopants resulting in enhanced efficiency of the 
photocatalyst system [11]. Both of doped species 
can produce the impurity states lying between 
valence band and conduction band causing a narrow 
bandgap, but non-metal dopants minimizes the 
recombination compared to cation dopants [12]. 
Therefore, mechanochemical method can be employ 
to dope non-metal element into oxide fine particles.

Caffeine is found naturally in the leaves, seeds 
and/or fruits of at least 63 plant species worldwide. 
The most commonly known sources of caffeine are 
coffee, cocoa beans, kola nuts and tea leaves [13, 
14]. Although it is found in many types of plants, 
the presence of caffeine in environmental water is 
largely attributed to discharges of domestic waste 
water [15]. Caffeine is largely expected to persist 
in the water, mainly due to its anthropic nature, 
distinctive origin, environmental destination, and 
elevated consumption [16].

In this paper, N-doped TiO2 is synthesized by 
mechanochemical method and characterized for 
structural, morphological, optical and chemical 
nature. The photocatalyst is also tested for 
photocatalytic destruction of caffeine.

EXPERIMENTAL
Chemicals

Caffeine (99%, BDH), Titanium dioxide (98%) 
supplied from labtech India, and Urea CO(NH2)2 
(BDH) were used for mechanochemical doping. 
Deionized water was used for the preparation of 
caffeine solution throughout the experiments.

Photocatalyst Synthesis
Commercial titania powder was mixed with 

5% (wt) urea (CO(NH2)2) before being introduced 
into mechanical grinding using agate mortar and 
pestle followed by heating the milled sample at 
400 oC in a muffle furnace for 1 hour. The grinding 
enabled the mechanochemical reaction between 
the components while the calcination allowed the 
enhancement of the binding strength as well as the 
removal of the unreacted starting material away 
from the surface of the oxide [17].

Photocatalyst Characterization
The crystalline structure of the photocatalyst 

was determined by X- ray diffraction using Philiphs 

X’pert X- ray diffractometer operated using CU-Kα 
radiation source at wavelength λ= 1.5406Å. The 
data were collected for the range of 2θ between 20 ⁰ 
to 120 ⁰. The morphology was recorded by scanning 
electron microscopy (SEM) recorded on JEOL 
JSM-5600.The Agilent Technologies (Cary630) 
FTIR Spectrophotometer was used in identifying 
the functional groups on the photocatalysts. The 
infrared spectra were measured from 400 to 1000 
cm-1 at room temperature. The diffuse reflectance 
spectroscopy (DSR) of the photocatalysts was 
obtained using Perking Elmer Lambda 35 UV-Vis. 
Spectrophotometer and was used to characterize 
the optical properties of the samples. The spectra 
were recorded at room temperature from 200 to 800 
nm and Kubelka–Munk relation was used to model 
the diffuse reflectance spectra into equivalent 
absorption spectra. 

Photocatalytic Experiments
Photocatalytic experiment was carried out in 

an immersion well photoreactor shown in Fig. 1. 
A desired amount of photocatalyst was suspended 
into a caffeine solution in a photoreactor. The 
degradation reaction was conducted in the 
dark for 30 minutes in order to equilibrate the 
heterogeneous mixture. Subsequently, the solution 
was irradiated for 300 minutes and samples were 
taken at interval of 30 minutes for analysis using 
UV visible spectrophotometer. Each sample was 
passed through 0.45 µm Millipore membrane filter 
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Fig.1: Schematic of an immersion well photoreactor
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to remove the photocatalyst before the UV analysis. 
The percentage degradation was calculated using 
the formula below

������������� � �� � ��
�� ∗ 100 

                                                              (1)

Where C0 is the initial concentration of the 
caffeine and Ct is the concentration of caffeine at 
time (t).

RESULTS AND DISCUSSION
Photocatalyst Characterization

Figs. 2 and 3 show the XRD pattern of the pure 
titania powder and the N-doped TiO2 prepared by 
mechanochemical doping respectively. Based on the 
spectra, the strong diffraction peaks representing 
the anatase phase (JCPDS 21-1272) are observed at 
2θ values of 25.6⁰, 38⁰, 48.32⁰, 54.14⁰, 55.83⁰, 62.92⁰ 
and 75.28 º for N-doped TiO2 as well as peaks at 
25.78º, 38.24º, 48.48º, 54.3º, 64.1º, and 75.48º for 

pure TiO2. This confirmed that the anatase phase 
is dominant and this is beneficial since anatase 
TiO2 is reported to be more photocatalytically 
active than rutile [18,19, 20]. The prepared N-TiO2 
peak broadened after mechanical doping and the 
size of the crystals also decreased compared to the 
pure TiO2. This can be attributed to formation of 
nanoparticles and aggregation of the crystallites 
as they get smaller that is in agreement with other 
reported studies [21, 22]. The sharpness of the 
peaks in the spectra can also be attributed to the 
calcination process which is believed to induce 
high crystallinity [18]. The absence of spurious 
diffractions indicates the crystallographic purity 
and the lack of peak of the doping specie also 
indicates its complete dispersion on the surface 
of the oxides [23]. The average particle size has 
been estimated using Debye-Scherer formula 
(equation 2). The surface state was also established 
from equations 3 and 4 as presented in Table 1.  

 

 
 
 

Fig. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: XRD Pattern for TiO2
 
 

 
 
 

Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: XRD pattern for N-TiO2
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It is observed that the prepared N-doped TiO2 
has smaller particle size and larger surface area 
compared to pure titania powder and should 
facilitate the faster photoreaction between TiO2 
and the interacting media which mainly occurs at 
the interface and strongly depends on the surface 
area of the material [24]. 

       𝐷𝐷 =
𝑘𝑘𝑘𝑘

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
 

                                                          
(2)

𝛽𝛽𝛽𝛽𝑆𝑆 =
𝛽𝛽𝑆𝑆
𝑉𝑉 × 𝜌𝜌

 
                                                        

(3)

    𝛽𝛽𝛽𝛽𝑆𝑆 =
6000
𝐷𝐷 × 𝜌𝜌

 
                                                        

(4)

Where λ is the wavelength of X-Ray (0.1540 
nm), β is FWHM (full width at half maximum), θ 
is the diffraction angle, SSA is the specific surface 
area, V is the particle volume and SA is the surface 
area, D is the size (average size), and ρ is the density 
of TiO2 (4.23 g.cm-3).

The surface morphology by SEM of TiO2 
and N-doped TiO2 is presented in Figs. 4 and 5, 
respectively. The growth of the mixture of yellow 

Table 1 

Photocatalysts Average size(nm) SA m2g-1 
TiO2 35.8 39.6 

N-TiO2 33 42.9 
 

Table 1:  Some properties of the photocatalysts

 
 
 
 
 
 

 
 
 

Fig. 4 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: SEM image of TiO2

Fig. 5: SEM image of N-TiO2
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like mass of N-doped TiO2 can be clearly seen from 
the SEM image of the doped photocatalyst. The 
uniformity of the observed yellow like powders in the 
morphology of prepared N-TiO2 indicates complete 
dispersion of nitrogen on the TiO2 surface. The 
difference in morphology observed in the N-doped 
TiO2 particles is indicative of the decomposition of the 
nitrogen precursor in accordance with the previous 
study [25]. Thus, the remaining unwanted material 
was necessarily decomposed during calcination and 
N-doped TiO2 would be finally obtained.

The FT-IR analysis was used to characterize 
the functional groups of the photocatalysts. The 
spectra are shown in Figs. 6 and 7 for pure TiO2 and 
N-doped TiO2, respectively. Generally, the prepared 

photocatalyst had similar curves indicating the 
effectiveness of the mechanochemical doping with 
nitrogen which did not result in the formation of 
other compounds as reported in the literature [26]. 
Fig. 7 confirms the substitution of crystal lattice 
O to N species occurred by nitration using urea 
molecule that resulted in the formation of N–Ti–O 
bond. The strong absorption band in the region 400 
to 600 cm-1 in the spectra of pure TiO2 and N-doped 
TiO2 has been assigned to the -Ti-O- stretching 
[17]. The intensity of the absorption bands of the 
prepared N-doped TiO2 are stronger, broader, 
and are in close proximity compared to that of 
pure titania. This indicates that N-doped TiO2 
sample contains more water and hydroxyl groups 

 
Fig. 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6: FTIR spectra of TiO2

 
 
 
 

 
 
 

Fig. 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: FTIR spectra of N-TiO2
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which play an important role in photocatalysis 
through interactions with photogenerated holes 
giving better charge transfer and inhibiting the 
recombination of electron–hole pairs [27]

The UV- Vis spectrum revealed that N-TiO2 
depicts higher wavelength for the absorption band 
at 430 nm corresponding to band gap energy 2.88 eV 
compared to pure TiO2  showing highest absorption 
at wavelength of 383 nm which is relevant to the 
band gap structure of anatase TiO2 (3.23 eV). This 
shift in the absorption band in N-TiO2 is attributed 
to color change from white to yellowish due to 
mechanochemical doping of nitrogen. Therefore, 
this clearly indicates the significant of nitrogen 
doping on the band structure of TiO2.

Photocatalytic Degradation of Caffeine
To explore the effect of mechanochemical doping 

of material during the photocatalytic degradation 
of caffeine, the prepared N-TiO2 was compared 
with pure TiO2 with equivalent concentration of the 
both photocatalysts for the degradation efficiency 
at the same experimental condition. Fig. 8 shows 
97% caffeine degradation over a doped system, 
whereas the degradation over TiO2 produces a 
degradation of 91% even at 300 minutes irradiation 
time and optimum photocatalyst dosage of 1.5 g/l. 
This can be explained in terms of the interaction 
between TiO2 and doping material, as well as the 
difference in morphology and structure from 
TiO2 bulk. Considering the surface analysis result, 
the N-doped TiO2 photocatalyst sample having a 
larger surface area could allow a larger amount of 

Fig. 8: Influence of the photocatalysts on the degradation of caffeine. 
Initial caffeine conc.: 30 mg/l, pH: 6.9, irradiation time: 300 minutes.

surface adsorbed species in which photocatalytic 
degradation strongly depends on.

CONCLUSIONS
A visible light responsive N-doped TiO2 

photocatalyst was obtained by mechanochemical 
grinding method using mixture of urea/titania 
followed by calcination at 400 °C. Photocatalytic 
efficiency of pure TiO2 and prepared N-doped TiO2 
photocatalysts exhibiting within 300 minutes of 
standard visible light irradiation was tested for the 
degradation of caffeine, and degradation efficiencies 
of 91 and 97% were obtained, respectively. 
Therefore, mechanochemical activation is proved 
to be an effective procedure where an improvement 
in technological process can be attained via 
combination of several effects which influence the 
properties of applied solid and can be used as an 
alternative to more conventional often solution-
based preparative strategies.
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