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Magnetic-fluorescent lanthanide doped sodium lutetium fluoride 
(NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal 
method by varying concentration of Gd3+. Powder X-ray powder diffraction 
(PXRD), scanning electron microscopy (SEM), transmission electron 
microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), particle size 
by dynamic light scattering (DLS), photoluminescence (PL) and magnetic 
studies were used to characterize the structural, optical and magnetic 
properties of these nanocrystals. Powder X-ray diffraction  results  signified  
good  crystallinity  and  effective  doping  in  sodium lutetium fluoride 
nanocrystals. The SEM and TEM micrographs defined their flower like 
morphology. The EDS was performed to investigate the presence of dopant. 
The emission intensities of the prepared samples are strongly controlled 
by particle sizes which are influenced by co-doping NaLuF4 nanocrystals 
with varying concentration of Gd3+. Besides the efficient optical properties, 
Gd3+ doped NaLuF4 nanocrystals exhibited paramagnetic behavior at room 
temperature with magnetization of up to 8.24× 10-3 emu g-1 at 15 kOe. 
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INTRODUCTION
Lanthanide ion-doped rare-earth fluorides 

have gained considerable attention because of 
their potential applications in the fields such 
as photodynamic therapy, three-dimensional 
displays, catalysis, solid-state lasers, low-intensity 
IR imaging and other optical devices arising from 
intra f-f transitions [1-5]. Among the various 
host matrices for Ln3+ ions, fluoride host lattices 
have high chemical and thermal stability and 
also possess low phonon energies to reduce non-
radiative relaxations, thereby improving the 
luminescence of the optically active dopants [6-8].  
Low-energy phonons and high ionicity are highly 
desirable properties for efficient luminescence. 
Multifunctional nanocrystals possessing both 
magnetic and fluorescent properties have received 
increasing attraction in the past decade [9-12]. 

The synthesis of magnetic nanoparticles (MNPs) 
have attracted much attention due to their 
excellent physico-chemical properties. During 
the last few years, efficient routes have been 
devised for the synthesis of shape-controlled and 
highly stable functionalized polyethylenimine 
(PEI), β‐cyclodextrin and Succinate grafted PEI 
nanocomposites with magnetic ferrites [13-17]. 
These functionally modified MNPs found their 
applications in dye degradations [18, 19], drug 
delivery [20-22] and as magnetically separable 
efficient organic catalyst, used for green oxidation 
of alcohols [23-27], oxidation of hydrocarbons in 
the presence of H2O2 [28], anti-oxidant [29] and 
synthesis of polyhydroquinoline derivatives [30, 
31]. Paramagnetic Gd3+ doped host metal fluoride, 
when combined with luminescent lanthanide metal 
ion gives a wide range of applications including 
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magnetic resonance imaging, drug target, various 
medical diagnostics, cancer therapy, recording 
material, catalysis and magneto-optics devices [32-
38]. NaLuF4 is considered as one of the promising 
host fluoride nanomaterials based on the physical, 
chemical and optical properties of the Lu3+ ion [39-
41]. Although the Lu-based host nanomaterials 
exhibit promising photoluminescence behaviour 
[42], limited reports are there on the study of 
the bi-functional optical and magnetic NaLuF4 
nanomaterials. In addition, the optical, magnetic, 
physical, and chemical properties of nanocrystals 
depend highly on their structure, size, and shape 
[43-45]. Therefore, it is very important to synthesize 
nanocrystals with well controlled size and structure. 
Lanthanide doped luminescent materials have 
been synthesized using various methods such as 
thermal decomposition [46], co-precipitation [47], 
hydro(solvo)thermal [48,49], ionic liquid-based 
synthesis [50], microemulsion assisted [51] and 
microwave-assisted synthesis [52]. Among these 
methods, hydrothermal synthesis allows excellent 
control over particle size, shape, distribution and 
crystallinity of material. The synthesis is conducted 
in a stainless autoclave using water as a solvent and 
nanocrystal formation process occurs under high 
autogenous pressure at a synthesis temperature 
above the boiling point of the solvent or mixed 
solution.

In this paper, we report the development of 
a hydrothermal method for the preparation of 
multifunctional magnetic-fluorescent lanthanide 
doped sodium lutetium fluoride (NaLuF4:Gd3+/
Yb3+/Er3+) nanocrystals. Luminescence efficiency 
and paramagnetic behaviour of doped NaLuF4 
nanocrystals have been studied which are promising 
for use as luminescent probes in biological labeling 
and imaging technology.

EXPERIMENTAL
Materials and instrumentation

Lutetium(III) nitrate hydrate Lu(NO3)3.H2O 
(99.9%), gadolinium(III) nitrate hexahydrate 
Gd(NO3)3.6H2O (99.9%), ytterbium(III) nitrate 
hexahydrate Yb(NO3)3.6H2O (99.9%) and 
erbium(III) nitrate hexahydrate Er(NO3)3.6H2O 
(99.9%) were purchased from sigma Aldrich. Sodium 
hydroxide (NaOH), trisodium citrate (Na3C6H5O7) 
and ammonium tetrafluoroborate (NH4BF4) were 
purchased from Alfa Aesar and used as received 
without further purification. Doubly distilled water 
was used for preparing aqueous solutions.

The phase structure and size of the as-prepared 
samples were determined from powder X-ray 
diffraction (PXRD) using D8 X-ray diffractometer 
(Bruker) at a scanning rate of 12ο  min-1 in the 
2θ range from 10ο to 70ο, with Cu Kα  radiation 
(λ=0.15405 nm). Scanning electron microscopy 
(SEM) analysis of the samples was recorded on FEI 
Nova NanoSEM 450. High resolution transmission 
electron microscopy (HRTEM) was recorded on 
Tecnai G2 20 S-TWIN Transmission Electron 
Microscope with a field emission gun operating 
at 200 kV. Samples for TEM measurements were 
prepared by evaporating a drop of the colloid 
onto a carbon-coated copper grid. The energy 
spectra were obtained by the energy-dispersive 
X-ray spectrum equipped on a Transmission 
Electron Microscope. The particle size of each 
compound was determined by DLS technique 
using Zetasizer Nano ZS-90 (Malvern Instruments 
Ltd., Worcestershire, UK). The photoluminescence 
excitation and emission spectra were recorded 
at room temperature using Agilent Cary Eclipse 
Fluorescence Spectrophotometer equipped with a 
Xenon lamp that was used as an excitation source. 
The magnetization as a function of an applied 
field for Gd3+ doped in core/shell nanoplates was 
recorded using vibrating sample magnetometer 
(VSM), Lakeshore 7410. All the measurements 
were performed at room temperature.  

Preparation
The pure/undoped NaLuF4 and NaLuF4:20%Yb3+ 

/2%Er3+/xGd3+ (x = 0%, 10%, 20%, 30%, and 45%) 
nanocrystals were synthesized by a hydrothermal 
method using trisodium citrate as a structure 
directing agent. The typical synthesis involved the 
addition of 10 mL of ethanol to 2 mL of an aqueous 
solution containing 1.2 g of NaOH under stirring 
to form a homogeneous solution. Then, 10 mL of 
trisodium citrate was added into the above solution 
under continuous stirring. Subsequently, 2 mmol 
RE(NO3)3 (RE = Lu, Yb, Er and Gd with designed 
molar ratios) and 5 mL of 4 mmol aqueous 
NH4BF4 solutions were added under constant 
vigorous stirring for 30 minutes. The resulting 
solution was transferred into a 50 mL stainless 
Teflon-lined autoclave, which was operated at 
170 °C for 24 hours. As autoclave was cooled to 
room temperature naturally, the precipitates were 
separated by centrifugation, washed with deionized 
water and ethanol in sequence, and then collected 
nanocrystals were dried at 60 οC for 12 hours. 
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RESULTS AND DISCUSSION
Crystalline structure and morphology   
The crystal structures and the phase purity of the 
as-prepared nanocrystals were examined by powder 
X-ray diffraction (PXRD) analysis. The diffraction 
peaks of the samples depicted in Fig. 1 correspond 
to the hexagonal and cubic phase (marked with 
stars) of NaLuF4 (JCPDS card no. 27-0726). It can 
also be seen that the diffraction peaks of the NaLuF4 
samples are very sharp and strong, indicating that 
products with high crystallinity have been obtained. 
High crystallinity is important for phosphors, 
because it generally means less traps and stronger 
luminescence. It should be noted that the distinctly 

strengthen intensities of typical peaks indicate the 
ideal growth orientation of the samples. The lattice 
parameters calculated using indexing method are in 
good agreement with those reported in the literature 
for bulk NaLuF4; a =5.901 Å, c = 3.453 Å (JCPDS 
card no. 27-0726) are shown in Table 1 [53]. The 
slight change in the value of lattice constants may be 
caused by the addition of the dopant metal ion. The 
diffraction peaks gradually broaden on increasing 
the Gd3+ concentration, indicating a reduction of 
particle size, which is further confirmed by modified 
Scherrer’s equation. The broadening of the diffraction 
peaks indicates that the sizes of the undoped and 
doped NaLuF4 nanocrystals are at the nanoscale. 
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Fig. 1 PXRD patterns for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals with 

different Gd3+ contents: (b) 0% (c) 10% (d) 20% (e) 30% (f) 45% 

 

 

Fig. 1 PXRD patterns for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 
nanocrystals with different Gd3+ contents: (b) 0% (c) 10% (d) 20% (e) 30% (f) 45%

Table 1 Calculated crystallite size and lattice parameters.
Table 1 Calculated crystallite size and lattice parameters.  
 

 
 
 
 

Sample Lattice parameters (Å) Crystallite structure (nm) 
a  =  b c Modified Scherrer’s method 

NaLuF
4
  5.910 3.464 120 

NaLuF
4
:Yb

3+
/Er

3+
  5.922 3.466 115 

NaLuF
4
:Yb

3+
/Er

3+
/10%Gd

3+
  6.051 3.520 107 

NaLuF
4
:Yb

3+
/Er

3+
/20%Gd

3+
  6.141 3.614 93 

NaLuF
4
:Yb

3+
/Er

3+
/30%Gd

3+
  6.351 4.100 85 

NaLuF
4
:Yb

3+
/Er

3+
/45%Gd

3+
  6.446 4.232 82 
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The average crystallite size of these nanocrystals 
was calculated according to the modified Scherrer’s 
equation

lnβ(°)=lnKλ(nm)/L(nm)+ln1/cosθ(°)                             

where, L is the crystallite size, λ is the 
wavelength of the Cu Kα radiant, λ=0.15405 nm, 
β is the full-width at half-maximum (fwhm) of the 
diffraction peak, θ is the diffraction angle and  K is 
the Scherrer constant equals to 0.89. If we plot the 
results of lnβ against ln1/cosθ, then a straight line 
with the slope of around one and the intercept of 
lnK/L was obtained. After getting the intercept, the 
exponential of the intercept was obtained: 
elnKλ/L = Kλ(nm)/L(nm)        

Having the value of K and λ, a single value of L 
in nanometer was calculated. All the major peaks 

were used to calculate the average crystallite size of 
the synthesized nanocrystals. 

The morphology of the synthesized undoped 
NaLuF4 and NaLuF4:20%Yb3+/2%Er3+/xGd3+ (x = 
0%, 10%, 20%, 30%, and 45%) nanocrystals was 
investigated by using electron microscope studies 
such as scanning electron microscopy (SEM) and 
transmission electron microscopy (TEM).  Fig. 2 
shows SEM images of the synthesized undoped, 
20%Yb3+/2%Er3+ doped and 20%Yb3+/2%Er3+/
x%Gd3+ doped NaLuF4 nanocrystals. It is evident 
from the SEM images that the synthesized 
particles have flower-shaped morphology and 
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Fig. 2 SEM images for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals with 

different Gd3+ contents: (b) 0% (c) 10% (d) 20% (e) 30% (f) 45% 

 

 

Fig. 2 SEM images for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals with different Gd3+ contents: 
(b) 0% (c) 10% (d) 20% (e) 30% (f) 45%
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do not show any aggregation of particles. SEM 
images also indicate that the surface morphology 
of nanocrystals do not cause any obvious change 
with the nature of dopant. Fig. 3 shows the high 
resolution TEM images of the synthesized undoped, 
20%Yb3+/2%Er3+ doped and 20%Yb3+/2%Er3+/
x%Gd3+ doped NaLuF4 nanocrystals. 

Energy dispersive X-ray analysis spectroscopy 
was performed to investigate the presence of 
dopant in the doped NaLuF4 nanocrystals. Fig. 
4 show the energy dispersive spectra of the 
Yb3+/Er3+ doped NaLuF4 nanocrystals and Yb3+/
Er3+/x%Gd3+ doped NaLuF4 nanocrystals. It has 
been found that the elements ytterbium, erbium, 
fluorine, sodium and lutetium exist in the Yb3+/Er3+ 

doped NaLuF4 nanocrystals whereas gadolinium 
presents in the respective synthesized Yb3+/Er3+/
Gd3+ doped NaLuF4 nanocrystals. These results 
confirm the doping in NaLuF4 nanocrystals. There 
is no impurity phase detected in the EDS spectra 
showing the formation of pure product. 

Particle size by DLS technique
The particle size of the synthesized undoped 

NaLuF4 and NaLuF4:20%Yb3+/2%Er3+/xGd3+ (x = 
0%, 10%, 20%, 30%, and 45%) nanocrystals was also 
examined using DLS technique. The nanocrystals 
were suspended in aqueous medium as colloidal 
solution after mild sonication for 15 minutes. As 
observed from Fig. 5, the DLS measurements show 
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Fig. 3 TEM images for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals with 

different Gd3+ contents: (b) 0% (c) 10% (d) 20% (e) 30% (f) 45%  

Fig. 3 TEM images for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals 
with different Gd3+ contents: (b) 0% (c) 10% (d) 20% (e) 30% (f) 45%
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mean particle size of 156, 137, 123, 98, 90 and 
85 nm for the synthesized undoped NaLuF4 and 
NaLuF4:20%Yb3+/2%Er3+/xGd3+ (x = 0%, 10%, 20%, 
30%, and 45%)  nanocrystals, respectively.  The size 
calculated by DLS technique is usually larger than 
that calculated from PXRD data. The anomaly in 
sizes is due to surface solvation and agglomeration 
of the particles.

Absorption spectra
The controlling and tuning of band edge 

emission and surface traps state emission of 
NaLuF4:20%Yb3+/2%Er3+ and NaLuF4:20%Yb3+/2% 
Er3+/xGd3+ nanocrystals are very important to 
realize the tunable optical properties and laser 

emissions. Fig. 6 shows the UV–Vis absorption 
spectra of the synthesized NaLuF4:20%Yb3+/2%Er3+ 
and NaLuF4:20%Yb3+/2%Er3+/x%Gd3+ (x = 20% and 
45%) nanocrystals. For recording the absorption 
spectra, the as-prepared doped NaLuF4 nanocrystals 
were dispersed in deionized water by ultrasonication 
for 15 minutes. The prominent absorption edge for 
as-prepared nanocrystals was observed at around 
980 nm and some other less intense absorption edges 
were also observed lying in the range of 350- 900 nm. 
The optical band gap of the synthesized nanocrystals 
was calculated according to the relationship between 
the optical band gap (Eg) and wavelength (λ) (i.e., Eg 
= 1240/λ). The band gap thus calculated was found 
to be 5.1 eV.

Fig. 4 EDS spectra for (a) 20%Yb3+/2%Er3+:NaLuF4 (b) Yb3+/Er3+/Gd3+ doped NaLuF4 nanocrystals
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Fig. 5 Particle size by DLS for (a) undoped and 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals with 

different Gd3+ contents: (b) 0% (c) 10% (d) 20% (e) 30% (f) 45% 
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Down-conversion photoluminescence
The down-conversion emission spectra of 

NaLuF4:20%Yb3+/2%Er3+/xGd3+ (x = 0%, 10%, 
20%, 30% and 45%) nanocrystals are shown in 
Fig. 7. Ytterbium acts as a sensitizer to enhance 
the luminescent property of erbium dopant ion 
[54]. Upon excitation at 378 nm, the obtained 
emission spectrum originates due to transition 
from the 4S3/2 excited state to the 4I15/2 ground state 
of the Er3+ ions. With the increase in Gd3+ content, 
the down-conversion (DC) emission intensity of 
NaLuF4:20%Yb3+/2%Er3+/xGd3+ decreases evidently, 
which is mainly attributed to a significant reduction 
in the size of NaLuF4 nanocrystals as evident from 
PXRD and DLS analyses. Decrease in the size of 
nanocrystals leads to the larger surface quenching 
sites, hence smaller nanocrystals may suppress DC 
luminescence by enhanced nonradiative energy 
transfer processes of the luminescent lanthanide 
ions [55, 56]. 

Magnetic properties
Besides the efficient optical property, Gd3+ doped 

NaLuF4 nanocrystals exhibit magnetic properties 
due to the large magnetic moment of Gd3+ at room 
temperature. Measurement of the magnetization 
as a function of the applied field (-15 kOe to 15 
kOe) for NaLuF4 nanocrystals doped with different 
Gd3+ contents, demonstrate that all the samples 
present typical paramagnetic behaviour (Fig. 8). 
The paramagnetic behaviour is mainly attributed 
to the seven unpaired inner 4f electrons, which 
are closely bound to the nucleus and effectively 
shielded by the outer closed shell electrons (5s25p6) 
from the crystal field [57]. The magnetization value 
of the as-prepared NaLuF4 nanocrystals doped with 
10%, 20%, 30%, and 45% Gd3+ ions are found to be 
4.83 × 10-3, 6.2× 10-3, 7.04× 10-3 and 8.24× 10-3 emu 
g-1 at 15 kOe, respectively. The magnetization of 
the NaLuF4 nanocrystals can therefore be modified 
from 4.83 × 10-3 emu g-1 to 8.24× 10-3 emu g-1 at 
15 kOe with increasing the Gd3+ doping content 
from 10% to 45%. These results indicate that these 
multifunctional NaLuF4 nanocrystals may have 
promising potential applications in bio-separation 
[58] and magnetic resonance imaging [59].

CONCLUSIONS
In summary, monodispersed Ln3+ (Ln = Gd, 

Yb and Er) doped NaLuF4 nanocrystals were 
synthesized via a simple hydrothermal method. 
PXRD analysis reveals that the size of NaLuF4 
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Fig. 6 Absorption spectra obtained for (a) 20%Yb3+/2%Er3+:NaLuF4 and 20%Yb3+/2%Er3+ doped 

NaLuF4 nanocrystals with different Gd3+ contents: (b) 20% (c) 45%  
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Fig. 7 Emission spectra for 20%Yb3+/2%Er3+ doped NaLuF4 nanocrystals with different Gd3+ 

contents monitored at λex = 378 nm  
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 Fig. 8 Magnetization as a function of an applied field for NaLuF4 nanocrystals doped with 

different Gd3+ contents 

 

 

Fig. 6 Absorption spectra obtained for (a) 
20%Yb3+/2%Er3+:NaLuF4 and 20%Yb3+/2%Er3+ doped NaLuF4 

nanocrystals with different Gd3+ contents: (b) 20% (c) 45%

Fig. 7 Emission spectra for 20%Yb3+/2%Er3+ doped NaLuF4 
nanocrystals with different Gd3+ contents monitored at λex = 378 nm

Fig. 8 Magnetization as a function of an applied field for 
NaLuF4 nanocrystals doped with different Gd3+ contents
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nanocrystals can be tailored by doping with Gd3+. 
Increase in the concentration of Gd3+ dopant ion 
can reduce the size of nanocrystal. Besides the 
efficient optical properties, Gd3+ doped NaLuF4 
nanocrystals exhibit paramagnetic behaviour at 
room temperature with magnetization of up to 
8.24× 10-3 emu g-1 at 15 kOe, which provides a simple 
approach for combining two functions into a single 
phase material. Therefore, the Gd3+ doped NaLuF4 
nanocrystals not only can control the size but also 
can integrate additional magnetic functionality 
into these optical nanomaterials. It is expected 
that these monodispersed bi-functional NaLuF4 
nanocrystals may have potential applications in in 
vitro and in vivo dual-modal fluorescent, magnetic 
bio-imaging and bio-separation.
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